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“Equality—impossible,” cry social choice theorists. First-past-the-post plagued
by vote splitting. Borda dismissing, championing ranked voting. “Bound to
lead to error,” muses Condorcet. Arrow discovering far more sinister defects.
This note reviews their seminal results. Walks through Arrow’s impossibility
theorem—teaching ranked voting is fallible. And concludes with Smith sidestep-
ping Arrow, guided by dancing honeybees, proclaiming range/score voting to be
“a larger improvement in ‘democracy’ than the entire invention of democracy.”

Defective, unsafe at any speed: Plurality voting

Borda (1781) denounced plurality voting systems “seriously defective” (Grazia,
1953) upon discovering vote splitting, whereby like-minded voters cast votes for
similar candidates, rather than rallying behind a single candidate, creating an
advantage for any dissimilar candidate. For example, when two left-leaning can-
didates run against a right-leaning candidate, the right-leaning candidate has
an advantage, because left-leaning voters must pick between two candidates.
This is known as the spoiler effect when it causes an opponent of similar candi-
dates to win and as a spoiler when caused by a minor candidate. Poundstone
proclaims “[f]ive presidential elections were probably decided by spoilers...At
least two others...are questionable cases. In still another race...four-way vote
splitting and the electoral college created such ambiguity that it was a factor in
precipitating civil war” (2008, p91). He concludes, “[w]ere the plurality vote a
car or an airliner, it would be recognized for what it is—a defective consumer
product, unsafe at any speed.”

Borda offered a solution: A voting system, now known as Borda count, which
instructs voters to rank candidates, e.g., A>B>C. Tallying involves assigning a
descending number of points to each position of each ranking, e.g., a voter’s first
preference might receive 3 points, the second might receive 2, and the last might
receive just 1. The candidate with the most points wins. For instance, given
preferences A>B>C, B>A>C, and C>B>A, candidate A receives 6 points, B
receives 7, and C receives 5, candidate B wins. Equivalently, voters can rank
candidates by putting numbers next to candidate names and the candidate with
the least points wins. Henceforth, we’ll consider this version of Borda count.
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Some voters are more equal: Ranked voting

Condorcet (1785) claims Borda count is “bound to lead to error...because it
takes into account elements which should be ignored” (McLean, 2003, p126).
Let’s consider this claim with an example: Three voters prefer A>B>C and
two voters prefer B>C>A. Candidate A is awarded 9 points (one point is
awarded by each of the three voters that favour candidate A and three points
are awarded by each of the remaining two voters) and B is awarded 8 (one point
from each of the two voters favouring candidate B and two points from each
of the remaining three voters). Candidate B wins. Borda would reason that B
appears one place behind A on three ballots and two places ahead of A on two,
hence, B is preferred (McLean, 2003, p11). By comparison, Condorcet reasons
that candidate A is favoured over candidate B by 3 out of 5 voters, hence, A is
preferred. Or, more generally, any winning candidate should beat every other
candidate in a two-way race. Such a winner is known as a Condorcet winner
and a voting system that ensures this criterion is known as a Condorcet method.

Condorcet went on to identify a general issue with ranked voting systems,
which we consider with another example. Suppose two voters prefer candidate
A to candidate B, and only one voter prefers B to A. A fallacy of composition
allows one to infer that the collective preference favours candidate A. However,
a truth about partial preferences is insufficient to derive a collective preference.
Indeed, amongst the two voters that prefer candidate A to B, one may prefer
C to both A and B, and the other may prefer C the least. Moreover, the voter
that prefers B to A may prefer B the most and A the least. That is, the voters’
preferences might be C>A>B, A>B>C, and B>C>A. Hence, the collective
preference is intransitive. The majority prefer A to B, B to C, and C to A.
Despite transitivity of individual preferences. This is known as the Condorcet
paradox, which demonstrates ranked voting systems can fail to select a winner.

Black (1948) postulated positioning voter preferences along a linear spec-
trum: Starting with the voter’s favourite, who is closest to the voter’s ideology,
and continuing through the voter’s preferences, becoming increasingly distant
from that ideology. Hence, a voter that prefers a left-wing candidate A will
always favour a centre-left candidate B over a right-wing candidate C. More-
over, a voter that prefers B, will favour A over C. Similarly, a voter that
prefers candidate C, will always favour B over A. It follows that only three
of the six possible preferences will arise. This can be verified by positioning
candidates A, B and C along a line, and attempting to draw a line between
candidates. (Candidate A should be closer to B than B is to C.) It is rational
to draw lines through A,B,C; B,A,C; and C,B,A; but illogical to draw lines
through A,C,B; B,C,A; and C,A,B. (This is presumably somewhat akin to
Black’s observation: “I wrote down a single diagram and saw...that the dia-
gram...could be interpreted as referring to a committee using a simple-majority
procedure,” 1996, pp43.) This suffices to preclude individual preferences that
lead to intransitive collective preferences, i.e., the Condorcet paradox cannot
occur, and leads to the median voter theorem, which asserts majority rule vot-
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ing systems select the candidate favoured by the median voter. (Black’s results
are theoretical, rather than practical; “political landscapes...are inherently mul-
tidimensional and cannot be reduced to a single left-right dimension, or even to
a two-dimensional space,” Alós-Ferrer and Granić 2015.)

Having rediscovered the Condorcet paradox and that linear ideologies avoid
it (Poundstone, 2008, pp38–39), Arrow discovered far more sinister defects of
voting systems (1950).

Arrow’s impossibility theorem

Arrow states two fairness conditions (Pareto efficient and independence of irrele-
vant alternatives) and proves that any ranked voting system (including plurality
voting, which simply ignores all but the first-ranked candidate) satisfying those
two conditions fails to achieve a third (non-dictatorial), in the context of any
mathematical function that inputs a set of voter preferences and outputs the
corresponding election result. The consequence: Ranked voting is unfair. (Or
we tolerate dictators.) For any ranked voting system that satisfies our seemingly
innocuous fairness conditions, a single voter controls the election result!

Theorem. Given a social welfare function that is Pareto efficient and indepen-
dent of irrelevant alternatives, the social welfare function is dictorial, assuming
at least three candidates.

The theorem shows there exists scenarios resulting in a dictatorial voter. Let’s
work through the details. (What follows is rather technical and you may prefer
to skip this section, perhaps watching—https://youtu.be/Q60ZXoXP6Hg—an
explanation of the key ideas instead, maybe watching regardless, as a primer.)

We start from a situation in which all voters rank a candidate last, e.g.,

[≻]0 =

a ≻1 c ≻1 b
a ≻2 c ≻2 b
c ≻3 a ≻3 b


(In matrices we highlight in bold any candidate about whom we make an as-
sumption.) Next, we start flipping voter preferences for that candidate from
last to first, whilst preserving all other relative rankings, e.g.,

[≻]1 =

b ≻1 a ≻1 c
a ≻2 c ≻2 b
c ≻3 a ≻3 b

 [≻]2 =

b ≻1 a ≻1 c
b ≻2 a ≻2 c
c ≻3 a ≻3 b

 [≻]3 =

b ≻1 a ≻1 c
b ≻2 a ≻2 c
b ≻3 c ≻3 a


We flip voter preferences until we discover a situation with a pivotal preference
such that flipping the preference causes the social welfare function’s rank of the
candidate to increase from last to first, i.e., the function ranks the candidate
last for set of preferences [≻]i−1 and first for [≻]i. That search cannot be in
vain, because (PE) requires the function to rank the candidate last for [≻]0 and
first when all voters rank the candidate first.
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A social welfare function W is Pareto efficient, if the function ranks
a candidate above another candidate when all voters rank the former
candidate above the latter:

∀a, b ∈ O .
∧

≻∈[≻]

a ≻ b =⇒ a ≻W ([≻]) b (PE)

That is, given a pair of candidates a and b from the set of candidates
O and given a set of voter preferences [≻], such that a ≻ b for every
voter preference ≻ in [≻], it follows that a ≻W ([≻]) b.

Pareto efficiency teaches us that a social welfare function must rank a candidate
last when voters unanimously do so (e.g., as per [≻]0), but is insufficient to teach
us the social welfare function rank of the candidate when ranked either first or
last by voters (e.g., as per [≻]1 and [≻]2). Coupling Pareto efficiency with
independence of irrelevant alternatives allows us to proceed.

A social welfare function W is independent of irrelevant alternatives,
if the function computes relative rankings between candidates based
only on the voters’ relative rankings of those candidates:

∀a, b ∈ O .

 ∧
≻∈[≻]

a ≻ b iff
∧

≻′∈[≻′]

a ≻′ b


=⇒

(
a ≻W ([≻]) b iff a ≻W ([≻′]) b

)
(IIA)

That is, given a pair of candidates a and b from the set of candidates
O and given sets of voter preferences [≻] and [≻′], such that a ≻ b for
every voter preference ≻ in [≻] iff a ≻′ b for every voter preference
≻′ in [≻′], we have a ≻W ([≻]) b iff a ≻W ([≻′]) b.

Independence of irrelevant alternatives teaches us that a social welfare func-
tion must rank a candidate above another when voters unanimously prefer that
ranking. A voter changing their rank of a further candidate doesn’t alter that
fact, e.g., if you favour candidate a over b, then your preference for candidate c
is irrelevant to the fact that you prefer a to b. Taken together, Pareto efficiency
and independence of irrelevant alternatives teach us that a social welfare func-
tion must rank a candidate first or last, when voters rank the candidate either
first or last, giving way to the following lemma.

Lemma. Social welfare function W ranks a candidate first or last when every
voter preference ≻ ∈ [≻] ranks the candidate first or last.

Proof. Suppose every voter ranks a candidate first or last, e.g.,

[≻] =

b ≻1 a ≻1 c
a ≻2 c ≻2 b
c ≻3 a ≻3 b


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Now suppose to the contrary that the social welfare function ranks the candidate
neither first nor last, hence, there exists higher- and lower-ranked candidates,
e.g., a ≻W ([≻]) b ≻W ([≻]) c. Let set of voter preferences [≻′] be derived from
[≻] by moving one such lower-ranked candidate immediately above one such
higher-ranked candidate in every voter’s preference, e.g., by moving candidate
c immediately above a in every preference, i.e.,

[≻′] =

b ≻1 c ≻1 a
c ≻2 a ≻2 b
c ≻3 a ≻3 b


Only the relative ranking between those two candidates are modified, so by
(IIA), the social welfare function ranking must not change, e.g., a ≻W ([≻′])

b ≻W ([≻′]) c, hence, a ≻W ([≻′]) c by transitivity. Yet, that contradicts (PE),
since all voters rank one of those two candidates higher than the other, e.g.,
each voter ranks c above a.

It follows naturally that a pivotal preference can be identified.

Corollary. Given a social welfare function and a candidate, there exists a set
of voter preferences for which the function’s rank of the candidate increases from
last to first when a single voter preference is modified.

Proof. By (PE), the social welfare function ranks a candidate last when every
voter preference does so. Moreover, from our lemma, it follows that there exists
a set of voter preferences such that flipping a single voter’s preference for that
candidate from last to first increase the social welfare function’s ranking of that
candidate to first.

Since a pivotal preference can be identified, we learn that there exist scenarios
in which a single voter preference determines a candidate’s fate. To demonstrate
that the voter controlling that preference is a dictator, we will show they can
pick the relative ranking of all other pairs of candidates, that is, the voter’s
preference coincides with the social choice function’s rank.

Having identified a candidate that the social welfare function ranks last for
set of voter preferences [≻]i−1 and first for set [≻]i, we know the function must
rank every other candidate higher in the former instance. The function must also
rank one of those other candidates higher when we modify a pivotal preference
to favour one such candidate, because the relative rankings between the two
candidates remain the same. Indeed, one of the candidates is ranked last for
voters 1, . . . , i−1 and first for voters i+1, . . . , |[≻]|, moreover, that candidate is
below the other candidate in the modified pivotal preference, hence, by (IIA),
the social welfare function must rank the other candidate higher. E.g., suppose
we modify [≻]2 to derive [≻]a2 by replacing pivotal preference b ≻2 a ≻2 c in
[≻]2 with a ≻2 b ≻2 c, i.e.,

[≻]a2 =

b ≻1 a ≻1 c
a ≻2 b ≻2 c
c ≻3 a ≻3 b


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Since the social welfare function ranks a higher than b in [≻]1, and since the
relative rankings between a and b remain the same in both [≻]1 and [≻]a2 , the
social welfare function must rank a higher than b in [≻]a2 . Moreover, the function
must continue to rank that other candidate higher when we modify all other
voter preferences (excluding the aforementioned pivotal preference) by switching
that other candidate’s rank with the rank of some other candidate, because the
relative ranking between our initial two candidates are unchanged. E.g.,

[≻]â2 =

b ≻1 c ≻1 a
a ≻2 b ≻2 c
a ≻3 c ≻3 b


Similarly, the candidate that ranks first for [≻]i must rank higher than a further
additional candidate, moreover, the first-ranked candidate must still be favoured
after applying both of the aforementioned modifications to [≻]i, e.g., in [≻]â2 . It
follows by transitivity that the first additional candidate must rank higher than
the second additional candidate.

Our reasoning is rather contrived—we’ve orchestrated a scenario in which the
voter controlling the pivotal preference controls the fate of a pair of candidates.
Let’s eliminate the scaffolding, generalise to show the controlling voter is a
dictator: Suppose we arbitrarily modify ranking of b in [≻]â2 for all preferences,
and by arbitrarily modifying the rank of a in the pivotal preference under the
constraint that a remains higher than c. E.g.,

[≻]ā2 =

c ≻1 b ≻1 a
b ≻2 a ≻2 c
a ≻3 c ≻3 b


It follows that voter preferences are all arbitrary, except the pivotal preference
which ranks a higher than c, hence, the voter controlling the pivotal preference
controls the fate of that pair of candidates. By (IIA), we can further generalise
to all pairs, i.e., the voter controlling the pivotal preference is a dictator.

A social welfare function W is dictatorial, if the function computes
the result from a single voter’s preference:

∃≻ ∈ [≻] . ∀a, b ∈ O . a ≻ b =⇒ a ≻W ([≻]) b (D)

That is, there exists a set of voter prefences [≻] containing voter
preference ≻, such that for each pair of candidates a and b from the
set of candidates O, if a ≻ b, then a ≻W ([≻]) b.

Lemma. The voter that modifies their preference in our corollary—to increase
the social welfare function’s rank of a candidate from last to first—is a dictator
over all other pairs of candidates.

Proof. Let [≻]i−1 be the set of voter preferences that exists by our corollary,
and let b be the candidate whose rank increases from last to first. Suppose
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x, y ∈ O \ {b}, e.g., when x = a and y = c. Let [≻]xi be derived from [≻]i by
modifying a pivotal preference to rank x first, whilst preserving all other relative
rankings, e.g., [≻]a2 . Moreover, let [≻]x̂i be derived from [≻]xi by modifying the
relative rankings of x and y for all preferences except the pivotal preference,
whilst preserving b in its extremal position, e.g., [≻]â2 . From our corollary, we
know the social welfare function ranks b last, hence, x ≻W ([≻]i−1) b and, by
(IIA), we have x ≻W ([≻]x̂i )

b, because the relative rankings between x and b are
the same for all voters. Indeed, b is ranked first for voters 1, . . . , i− 1 and last
for voters i + 1, . . . , |[≻]|, moreover, b is ranked last in the unmodified pivotal
preference and below x after modification. Similarly, we also know b ≻W ([≻]i) y
and, by (IIA), we have b ≻W ([≻]x̂i )

y, because relative rankings between b and y

are the same in [≻]i and [≻]x̂i . It follows by transitivity that x ≻W ([≻]x̂i )
y.

Let [≻]x̄i be derived from [≻]x̂i by arbitrarily modifying the rank of b for all
preferences, and by arbitrarily modifying the rank of x in the pivotal preference
under the constraint that x remains higher than y, e.g., [≻]ā2 . We started from
the set of voter preferences [≻]i, which only made assumptions on the position
of candidate b; we derived [≻]xi by ranking x first in the pivotal preference and
[≻]x̂i by modifying the relative rankings of x and y for all preferences except the
pivotal preference; finally, we derived [≻]x̄2 by arbitrarily modifying the rank of
b for all preferences, and by arbitrarily modifying the rank of x in the pivotal
preference under the constraint that x remains higher than y. It follows that
voter preferences are all arbitrary, except the pivotal preference which ranks x
higher than y, e.g., a beats c.

We have x ≻W ([≻]x̂i )
y and, since the relative rankings between x and y are

unchanged between [≻]x̂i and [≻]x̄i , it follows by (IIA) that x ≻W ([≻]x̄i )
y. Yet,

we have only assumed that x is ranked higher than y in the pivotal preference.
Thus, the voter that modifies their preference in the above corollary is a dictator
over x and y, and for that matter all pairs of candidates that exclude b.

Proof of Arrow’s impossibility Theorem. By our corollary, given a candidate z,
there exists a set of voter preferences for which the social welfare function’s
rank of candidate z increases from last to first when a single voter’s preference
is modified. It follows by the above lemma that the single voter is a dictator
over all other pairs of candidates x, y ∈ O \ {z}.

Our proof is inspired by Kevin Leyton-Brown’s excellent lecture: https://

youtu.be/QLi_5LCwJ20.
Arrow’s impossibility theorem teaches us that ranked voting is fallible, an

ideal ranked-voting system simply cannot exist; there is a possibility that a
single voter may yield dictorial control over the result. That’s not to say such
scenarios are probably, only that such scenarios can exist.
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Range voting: Hot or Not?

I was (unknowingly) inducted to Hot or Not by my bestie, at uni, c. 2003—she
wanted to establish her superior attractiveness. Receiving an almost two-decade
later reminder, from Poundstone, was unexpected! Hot or Not (aka range vot-
ing), wherein voters score a candidate (or photo) on a scale (e.g., ten for hot, one
for not), provides a means around Arrow’s impossibility result (which only ap-
plies to ranked voting systems, rather than rating-based systems such as Hot or
Not). Vote splitting and spoilers are avoided; similar candidates can be scored
the same: “Arrow’s Nobel-winning 1951 ‘impossibility theorem’ misdirected the
entire field of voting systems for 50 years,” bashed Smith (2007), “Arrow’s the-
orem is not nearly as important as it at first seems” (2005). Having previously
argued the superiority of range voting over ranked voting, on the basis that
range voting creates less “human unhappiness” than ranked voting (2000; c.
2008), Smith concludes “switching to range voting would be a larger improve-
ment in ‘democracy’ than the entire invention of democracy” (2004)—Churchill,
we have a solution, range voting, which perhaps pre-dates the human race, pos-
sibly originating from the nesting behaviour of honeybees (Smith, 2007).
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